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Turbulent sublayer streaks are studied with the aid of a simplified theoretical model. 
In this the nonlinear activity is assumed to be intermittent and to act locally in space 
during a very short initial time so as to set up the initial conditions for the 
subsequent linear and inviscid evolution of the resulting three-dimensional flow 
disturbance. The mean shear flow is taken as a parallel one and a correction for the 
long-term effects of viscosity is applied. A model for the initial nonlinear phase is 
chosen to represent the local Reynolds stresses that would be produced by a patch 
of local inflectional instability. The streamwise dimension of the resulting eddy is 
found to grow linearly with time in accordance with the algebraic instability 
mechanism (Landahl 1980). The associated Reynolds shear stress is expressible in a 
simple manner in terms of the liftup of the fluid elements and is suggestive of an 
algebraic-type Reynolds stress model similar to, but not identical to, that of 
Prandtl’s (1925) mixing-length theory. 

1. Introduction 
One of the most outstanding characteristics of the near-wall turbulence structure 

in a boundary layer or channel flow is the presence of streamwise streaks of low- and 
high-speed regions (often referred to in the literature as ‘ streamwise vortices ’). Their 
significance was first clearly brought out by the flow visualization experiments of 
Kline et al. (1967). The near-wall turbulence structure has since then become the 
subject of extensive studies by many researchers. In recent years these have been 
greatly aided by the availability of numerically simulated turbulent flows such as 
those obtained by Moin & Kim (1982), see e.g. the investigation by Alfredsson, 
Johansson & Kim (1988). Streamwise streaks are found also in other flows such as in 
the laminar region behind a turbulent transition spot as well as in turbulent mixing 
layers. Thus, streak formation appears to be a phenomenon common to many shear 
flows, but its cause is little understood. 

Most of the efforts to date to give a theoretical explanation for the streaks have 
been concerned with their average spanwise spacing. These efforts have met with 
some limited success. Bark’s (1975) calculation of the wavenumber-frequency 
spectrum of the streamwise velocity fluctuations in a boundary layer with the use of 
the wave-guide model (Landahl 1967) gave a peak of the streamwise fluctuation 
spectrum a t  a spanwise wavenumber corresponding to a streak spacing of about 150 
in viscous wall units, which is to be compared to  the experimental value of about 100. 
Jang, Benney & Gran (1986) proposed that the streak formation is a result of a 
resonance between the vertical vorticity mode (the ‘Squire mode’) and the 
Orr-Sommerfeld mode. They found that such a resonance could occur at a spanwise 
wavenumber corresponding to a streak spacing of 90 in viscous units, and they were 
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also able to compute a resulting streamwise vortex pattern in qualitative agreement 
with experiments. In  their calculations based on rapid distort’ion theory, Lee & Hunt 
(1988) found a spanwise spacing about equal to  the initial turbulence lengthscale 
with the spacing increasing with the distance from the wall. 

In their study of the wall structure, Hatziavramidis & Hanratty (1979) applied a 
‘2  &dimensional ’ model in which the cross-flow velocity (v, w) field was approximated 
as a two-dimensional one in the cross-flow (y,z) plane. The flow near the wall was 
considered driven by the fluctuating pressures originating from the action of the flow 
outside wall region which was represented as a periodic one with a spanwise 
lengthscale of 100 viscous units. From this model, they found good agreement with 
measured statistical properties, particularly for yt < 15. The model has been further 
refined in the later papers from Hanratty’s group. 

The problem of the generation and maintenance of the turbulent fluctuations in a 
boundary layer was addressed by Landahl (1975). By considering the interaction 
between disturbances of widely different scales, he showed that, in a flow of small 
viscosity, a large-scale disturbance, which could be initiated by a patch of small-scale 
instability arising in a region of inflectional velocity distribution, would form an 
almost permanent ‘scar’ of velocity defect or excess. In  a later paper analysing the 
evolution of linear three-dimensional disturbances in a parallel inviscid shear flow 
(Landahl 1980) he demonstrated that, for a certain wide class of initial disturbances, 
the streamwise dimension of the disturbed region will grow a t  a constant rate and 
thereby give a total disturbance energy which is proportional to  time. This algebraic- 
type instability can arise in all inviscid shear flows, whether stable or not in the 
Rayleigh sense ; however, for flows with inflection the algebraic growth will of course 
eventually be swamped by the exponential one. 

In  the present paper the evolution of streamwise streaks is studied with the 
possible role of algebraic instability kept in mind. A simplified model is set up in 
which nonlinearity is assumed to act only during short intermittent ‘ bursting ’ 
intervals of local instability, thereby setting up the initial conditions for the 
subsequent linear evolution of the disturbances created. The long-term effects of 
viscosity are incorporated in an approximate fashion. It is found from this model 
that disturbances with spanwise asymmetry will grow into streaks, in consistency 
with algebraic instability, and that their structures show remarkable similarity with 
those observed in experiments and in numerical simulations. 

2. Basic formulation of the model 
The flow considered is modelled as a parallel mean shear flow gJil, onto which is 

superimposed an unsteady three-dimensional disturbance with velocity ui(xi, t )  and 
pressure p(x i , t ) .  The coordinate system used is the usual one in boundary layer 
theory with x1 = x in the mean streamwise direction, x2 = y normal to the wall 
(located at y = O),  and .x3 = z in the spanwise direction (figure 1). From the 
Navier-Stokes equations the following equations for the disturbed flow field are 
obtained Ui(Xj, t )  = IT(,) a,, + U i ( X j ,  t ) :  

Du, - 
-+U‘(y)u,6,, = 
Dt 

aui 
axi - = 0, (3) 
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where 

x, XI 

FIGURE 1. Coordinate system. 

D a - a  
- =-+u--, 
Dt at ax 

Ti j  = -p(u iu j -qq) .  

Elimination of the pressure gives (Landahl 1967) 

where 

v, P -  vv4v = q, 
D V 2 V  

Dt 
-- 

(7) 

which may be viewed as a non-homogeneous Orr-Sommcrfeld equation in which the 
nonlinear terms provide, through q, the random forcing. In  view of the expected 
boundary-layer character of the fluctuations one may anticipate that the nonlinear 
terms singled out, which contain the highest y-derivatives, would be the dominating 
ones near the wall. 

3. Some idealized models 

constructed, each with its own range of applicability. 
From the above basic formulation a number of different idealized models may be 

For very weak disturbances one could consider the use of linear theory 

This theory has been found to describe adequately the evolution of forced oscillatory 
disturbances in a turbulent free shear layer (Gaster, Kit & Wygnanski 1985). This 
flow, being inflectional in the mean, is inviscidly unstable, and the linear interaction 
between the disturbances and the mean shear flow theory thus appears to capture an 
essential part of the turbulence mechanism. For a shear flow that is linearly stable 
to small disturbances, however, disturbances cannot arise by themselves through 
linear instability, and one would have to consider some alternative means of 
initiation of the disturbance, by some outside means or through the local effect of 
nonlinearities. 

Application of Fourier transform to (6) yields an equation with a linear 
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Orr-Sommerfeld operator on the left-hand side. Regarding the right-hand ‘source ’ 
term, q, as given, one may treat the flow as a linear system forced in a random 
manner by the nonlinear interaction between the velocity fluctuation components. 
On the assumption that the spectrum of q is reasonably flat, one finds from this 
wavenumber-frequency spectra dominated by the lightly damped Orr-Sommerfeld 
waves near resonance (the wave-guide model, Landahl 1967 ; Bark 1975). The spectral 
representation is not very useful for the treatment of the space-time evolution of a 
coherent structute, however, the Orr-Sommerfeld modes not being particularly well 
suited for the representation of an initial disturbance of an arbitrary form (for a 
boundary layer they do not form a complete set, for example). 

For short times after the creation of a flow structure, the effects of viscosity may 
be neglected. Hence one may work with the inviscid model 

which for fluids of small viscosity may be applicable for fairly long evolutionary 
times. However, even a small viscosity will eventually become important for very 
long times and we will consider its long-time effects later. 

An instructive model for the study of the qualitative effects of nonlinearities is the 
inviscid jiat-eddy model of Russel & Landahl (1984), in which horizontal Dressure 
gradients are neglected, 

D D  a = 0 ,  -- D ( u +  a) 
Dt Dt-Dt+uGi$ 

Dw 
__ = 0, 
Dt 

which was found to give a singularity a t  a finite time after the initiation of the 
structure, manifesting itself as a local outflow of infinite strength with a flow pattern 
resembling that seen in ejections from the wall region (see Landahl & Henningson 
1985). 

An approximation that has been applied with considerable success for the study 
of the evolution of spectra of turbulent flows going through region of strong shear 
and rapid acceleration/decelerations is the rapid distortion theory (see e.g. Townsend 
1976), which for the shear-flow case may be obtained by neglecting all nonlinear (and 
usually also viscous) terms in (6) and setting the mean shear constant, so that 
i7 = O ,  giving 

where @ = vzv, (14) 

which may be integrated over time so as to produce the Poisson equation (14) for v 
directly expressible in terms of the initial conditions. This may be solved by standard 
methods and spectra are hence readily constructed. However, because of the neglect 
of nonlinear mechanisms, rapid distortion theory only holds for the short- and 
medium-length time of spectral evolution. It does not yield a steady-state solution. 

A formulation related to  that of rapid distortion theory is the one obtained by 
assuming nonlinedr intermittency , giving 

Dv2v - av 
~- u”--vv4v = q, 

Dt ax 



and where t = t, are the ‘bursting ’ instants. As will be seen below, one may formulate 
this problem as a linear initial-value problem with the initial conditions set by the 
nonlinear activity a t  t = t,. Statistical data from the near-wall region (Moin & Kim 
1982) show that the v-component is highly intermittent (but not the u-component) 
as indicated by the extremely large flatness exhibited by its distribution function. 

In view of the observation that the near-wall turbulent flow contains structures of 
widely varying scales, which may interact in an important manner despite their large 
scale separation, i t  may be interesting to consider a model employing scale 
subdivision with the large scales accounting for the coherent structures and the small 
scales involving the incoherent background. Such a scale subdivision yields the 
following pair of equations (Landahl 1975) : 

where 

d, + u;, c; = 0, - u.  = 
large-scale random 

‘ coherent’ field ‘non-coherent ’ 

The small scales could be initiated by local instability, for example, in regions where 
the large-scale flow develops inflection. Then, for the small-amplitude case the right- 
hand side of (22) may be neglected leading to an Orr-Sommerfeld-type equation but 
with slowly varying coefficients in time and horizontal space. This could be handled 
with the aid of kinematic wave theory. 

4. Model for the streaky structure 
In view of the observations that the vertical component of the fluctuating velocitly 

field is highly intermittent we will adopt the intermittency formulation given above 
and apply it to an inviscid disturbance, 

- av 
~t ax 
-- D+ u”- = &,(x, y ,z)S( t - t , ) .  

Integration over time from t = t ,  -0 to t = t ,  + 0 gives 

(23) 

in which 
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and wherc 1 = [% 4x1, y, z ,  t l )  dt,, (26) 

(27) x1 = x- D(y) ( t - t l ) .  

Here 1 is the fluid-clcment liftup in linear approximation, cf. Prandtl (1925). For 
t > t, one may formulate the problem as an initial-value one with 

and, on the assumption that I = 0 for t = t,, 

4 = 4n = V2v, = Q,(x, y, z )  for t = t ,  + O .  (29) 

Inversion of the Laplacian gives 

where R1 = [ ( ~ - 2 1 ) ~ +  (y -y l ) '  i- ( z - z , ) ' ~ ,  (31) 

Rl = [(x-x1)2+ (y+y1)2+ (z-z,)"]" (32) 

and where $(x,y,z; t )  is given by (24), ( 2 5 ) .  The fluid-element liftup, 1 ,  may be 
obtained from (26) by direct integration. After a reversal of the orders of integration 
one finds the following result : 

with 

J -m 

with g* = xl-O(y)(t-t,), g* = 2 1 - 1 7 ( y ) ( t - t l ) .  

For the streamwise fluctuation component one has 

1 aP 
~ = - vO"(y) -__ ( +nonlinear terms). 
D U  

Dt pax  (37) 

The pressure may be obtained from the divergence of the horizontal perturbation 
momentum equations which gives 

D V  v;. (f) = <- V ,  Q ( + nonlinear terms) 

(subscripts x and y denoting partial derivatives), where 
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Let the inverse of the two-dimensional Laplace operator be defined by L-l( f ), where 

QI 

(40) 

With v = L-'(v), L = L-l(z) (41) 

L-l(f(x,z)) = 4 i r ~ ~ , d z l S _ m f ~ x " ~ l ~ l o ~ ~ ~ Z - ~ 1 ~ l f ~ ~ - ~ l ~ ~ l d ~ l .  1 "  

one then finds from (37) that 

a 
ax u = %,(En, y, z )  - 1Q(y) -- [V, - V,,(&, y, x )  - L, ( +nonlinear terms), (42) 

subscript n denoting values a t  t = t ,  as before. For structures that are highly 
elongated in the streamwise direction Vi c a2/az2,  and one has 

For such structures the pressure gradient term will give a contribution to the 
streamwise perturbation velocity which is of the order ( Z a / Z l ) z  times that coming from 
the first term and hence negligible, giving 

(cf. Prandtl 1925). The first term represents a purely convected part of the 
disturbance with v = 0, which will be considered separately below. I n  the calculations 
of the long-time evolution of the structure to be presented below it will be assumed 
that u, = 0. 

On the other hand, for structures that vary little with z ,  i.e. are nearly two- 
dimensional, 

then u x - 1, vy(xl ; z )  dx, (461 
in consistency with continuity. 

here i t  is convenient to set 

where 

For the study of the evolution of a highly three-dimensional structure of interest 

v = Vtrans + winter, (47) 

(48) Vtrans - - -'r dx1 Sm dz1 IOm 4n -a, -a, 

For small times the disturbance is dominated by its transient part which may be 
found directly from the initial distribution. The interactive part is zero for u' = 
const., and the result then becomes identical to that of rapid distortion theory. For 
a non-zero P,  the interactive part of the solution must be determined by a step-by- 
step integration in time. This was done in the numerical examples presented below 
with the use of a specially developed explicit method having second-order accuracy. 
For small and moderate times the transient part alone (which gives results in 
agrccmcnt with rapid distortion theory) is found to represent the solution in a 
qualitatively satisfactory way. As will be demonstrated below, for very long times 
the disturbance will evolve into a pair of streamwise streaks. 

20 FLM 412 
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5. Long-time behaviour - the role of algebraic instability 
The long-time structure of the disturbance may be directly inferred from the 

solution (33)-(36). Consider an initial local disturbance of streamwise length 2L 
confined between x > - L  and x < L. Also, set 

00 

&,(XI, Y, 2) dx, = P,,(Y? z ) ,  (50) L 
where P,, is assumed to be non-zero. Then, following (33), for large t there will be a 
streamwise region of length Axl = IU-ollt-2L for which the contribution to the 
integrand from the initial condition will become independent of xl. Also, the 
contribution from the term in (33) proportional to is likely to be small, since for 
a stable mean profile w vanishes as t approaches infinity and, furthermore, the 
streamwise average of the term is zero. Hence, for large times, the flow will tend to 
become two-dimensional in the cross-flow (y, z )  plane over a streamwise length 
growing linearly with time. 

This phenomenon is related to the concept of algebraic instability explored by 
Landahl (1980). He showed through streamwise averaging of the perturbation 
equations that for an inviscid shear flow without inflection, having u = uo, w = wo, for 
t = 0+, 

(51) 

It follows from this that, for an inviscid shear flow that is stable in the Rayleigh 
sense, the total streamwise momentum, and the perturbation energy, will grow 
linearly in time for all times after the initiation of the disturbance. As it is clear from 
the above analysis, the amplitude of the disturbance does not grow for all times, 
instead the streamwise length of the disturbance continues to grow linearly in time. 
Of course, in a real viscous fluid this growth will eventually cease. Nevertheless, for 
a fluid of small viscosity the flow will admit a substantial algebraic growth before the 
slow viscous decay takes over, in particular if the mean shear is large (the long-time 
effects of viscosity will be addressed later). Therefore, t,hree-dimensional disturbances 
initially localized in the spanwise direction will evolve into highly elongated ones, i.e. 
will produce streaky structures having a large ratio of streamwise to spanwise 
dimensions. For the calculation of the long-time behaviour of such eddies it is 
appropriate to employ the ‘ slender-body ’ approximation, familiar in aerodynamics 
(see e.g. Ashley & Landahl 1965). It reduces the triple integral in (30) to a two- 
dimensional one in which the streamwise variable only enters parametrically, i.e. 

rl = “ Y - Y 1 ) 2 + ( Z - - J 2 1 t  (54) 

Fl = [(y+y1)2+ (z-z,)‘]” (55) 

Very close to the wall the solution may be simplified even further so as to be 
expressible through the following line integrals ; 

(56) 
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The numerical results presented below are all based on the near-wall approximation 
(56). 

6. Reynolds stresses 
It is of interest to determine the contribution from the streaks to the mean 

Reynolds shear stress. This will be done on the basis of linear inviscid theory. The 
gradient of the turbulent shear stress is obtained from the average of 

(57) 
a 

aY 
--(uw) = -uwy-uuyw. 

We want to determine the contribution from each streak by integration over time 
and horizontal space. It is convenient to express this in terms of the liftup variable 
1. By introducing (42) and neglecting the terms involving streamwise derivatives one 
finds (taking u, = 0) after integration with respect to time 

l a  

2 aY 
-1 & (uw) dt = -- [12Q(y)] 

or -.rmdXrm dx L (uw) dt = iQ(yY) /Im dx JYrn Z2 dz, (59) 

which differs from Prandtl’s (1925) famous formula 

- (uv) = Zk(Q(y))2, (60) 

I ,  being the root-mean square of 1. Prandtl obtained this result under the assumption 
that w E -u. For a two-dimensional flow one finds in a similar manner that 

which is equivalent to Taylor’s (1915) result obtained from the vorticity transport 
equations. On taking the streamwise average and noting from (50) that for large t the 
integrand in (33) is constant in x and equal to Pm = SZm Q,  dx over a distance equal 
to lo-O1lt one finds that 

- p x J ; m d z [  W ) d t  

00 m 

= itv(Y)J 0 H(y,y,)Pnm(Yl;z)dylJ 0 ~(y’y2)~nm(y2;z)dy2, (62) 

where, in the near-wall approximation, 

W Y ,  Y1) = 0.5(lY -Y11 - Y  -YA. (63) 

In  this inviscid flow model the shear stress contributed by a single streak thus 
continues to grow linearly in time for all times, in consistency with the prediction of 
algebraic instability theory. That the linear inviscid theory gives a Reynolds stress 
that grows linearly with time was found also by Moffatt (1965) in an analysis based 
on rapid distortion theory. In  a real flow the viscosity will of course eventually make 
the streak decay, but for a fluid of low viscosity this is a very slow process. More 
likely, the streak will suffer breakup due to local inflectional instabilities in a finite 

20-2 
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lifetime. The long-term effects of viscosity and secondary instability will be discussed 
further below. 

For the total average Reynolds stress contributed by the near-wall streaks one 
thus has 

where tb and Tb are, respectively, the average lifetime of the streak and the time 
between bursts, and where 

( ) denoting ensemble average. It follows from (63) and (64) that  the Reynolds stress 
varies like y2 for small y. This supports the model proposed recently by Haritonidis 
(1989). For large y, R(y,,y) will become a function of yl-yz only (cf. the random- 
walk problem), and the average Reynolds stress will then become proportional to 
yc". In the constant-stress region this will lead to a logarithmic mean velocity profile. 

7. Conditional sampling 
For the study of coherent structures i t  is necessary to apply conditional sampling 

techniques in order to bring out the characteristic features of the structures of 
interest. Since the model evolution equations developed are linear, the averaging 
over the sample leads to  a simple linear superposition of the individual events 
selected by the sampling criterion applied, giving 

from which the sampled fluid-element liftup (1) and hence the sampled streamwise 
velocity 

may be obtained. 
A sampling method that has been used with some success in the literature is the 

variable interval time averaging (VITA) sampling criterion (Blackwelder & Kaplan 
1976), which sorts out events for which the local variance, evaluated for a selected 
time interval, T, exceeds a preset threshold factor, k ,  times the mean-square 
fluctuation level of the streamwise velocity component, i.e. 

As pointed out  by Johansson & Alfredsson (1982), the integration time acts primarily 
as a filter so that small T tends to sort out events that are short-lived, whereas large 
T singles out long-lived events. Since the measurements are carried out in a fixed 
laboratory frame of reference, a short-lived event has a corresponding short 
streamwise scale, and vice versa for the long-lived ones. 

The application of such a criterion supplies only the instants of the events around 
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which the sampling is done. It has been found that the sampled signal normalized 
with the root-mean-square fluctuation amplitude and with the square root of the 
threshold IC is approximately independent of the threshold level (Blackwelder & 
Kaplan 1976). Landahl(l984) has shown that this is consistent with a linear model. 

8. Convected eddy 
For an inviscid shear flow without inflection a linear disturbance will decay a t  a rate 

faster than t-l. Hence, for long times, p + 0 and the equation for u becomes simply 

DU 
Dt 
-- - 0, 

where u, is the final distribution of the u-perturbation velocity after the initial 
formation period with non-zero u has subsided. The result (72) is nothing but a 
statement of Taylor’s ‘frozen field ’ hypothesis. The shear due to such a disturbance, 

thus intensifies linearly with time and leads to the formation of internal shear layers 
in regions where urn$< 0, which may with time become susceptible to local 
inflectional instability, as noticed by Gill (1965). An alternative explanation of the 
formation of the shear layers is through stretching of the spanwise mean vorticity by 
the spanwise perturbation velocity gradient w, (note that, from continuity, 
w, = -uml with u = 0). However, because of the continuous increase in shear, the 
viscous shearing stresses will eventually become important, and one needs to 
consider the diffusion equation 

vv2u = 0. 
DU 
Dt 
-- (74) 

The effects of a small viscosity may be determined in a simple approximate manner 
by setting 

which for large times gives 

,245 = F(5,  y, z,  t ) ,  (75) 

V2u  = t2(U’)2F55+O(t)+0(1). (76) 

After application of the transformation 

T = &vtz( Q)’ t3 (77) 

and neglect of the unimportant terms a t  large times, one obtains 

FT-Fsc, 0, F(k> Y, z , O )  = urn. (78) 

This may be solved with the aid of the standard methods for the heat equation. For 
an initial disturbance in the form of a Gaussian ‘hat’, 
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of streamwise scale I, one obtains the simple result (Landahl 1984) that 

where 

This result shows that the viscosity simply tends to make the disturbance grow in the 
streamwise direction and to decay a t  the same rate so as to keep the total streamwise 
momentum defect constant. Following this, in the calculations presented here the 
effects of viscosity are approximated simply by stretching continuously the 
streamwise dimension of the structure according to (81) and simultaneously reducing 
the amplitude by the factor (ZJL). 

It follows from (80), (81) that the maximum shear occurs after a finite time given 

For the linearly growing portion of the streak, in which u eventually becomes 
independent of x, this analysis will not hold and the variation of y with time will have 
to be determined from the full diffusion equation (74) with the term uyy included. 

9. Modelling of the nonlinear driving terms 
It follows from the above analysis of a convected eddy that, because of the 

spanwise stretching of the mean shear, local regions of high shear will always arise 
in a disturbed three-dimensional flow of low viscosity. Such regions can be expected 
to suffer from local instability of the inflectional type. Because the timescale of such 
an instability is inversely proportional to the shear, the instability will develop very 
quickly and thereby provide a local strong mixing that could serve as the 
intermittent driving term in the model. Although there could also be other 
mechanisms giving rise to locally strong nonlinear activity, we will assume the 
dominating one to be local inflectional instability. 

Provided the scale of the unstable motion is much smaller than the background 
large-scale motion which is causing it, one can use the classical hydrodynamic 
instability theory in conjunction with kinematic wave theory to study the 
exponential growth of a wave train, or wave group. One thus analyses an instability 
of the form 

u = ?;(y)E, v = .;(y)E, w = z;(y)E, (83) 

where E = exp[ia(x:-cct)+i/3~], c = c,+ici (84) 
(real part is implied). Slow variations in (z,y)-space and time of the complex 
amplitudes 4,8,& could be incorporated with the aid of kinematic wave theory. The 
disturbances develop on a parallel flow field of the form 

Wy) = (U(y), Wy)), u = u+c W y )  = 6, (85) 

the tilde symbol referring to  the large-scale coherent motion which is assumed to 
vary slowly in (x, 2)-space and time. Manipulation of the inviscid linearized 
disturbance cquations in a manner similar to that employed above (57)-(61) in the 
calculation of the contribution to  the Reynolds stress from a local disturbance 
structure gives 

- - (uv*) = A sin 0, + B cos Ow, (86) 
d 
dY 

d 
-- (&v"*) = - A  cos 0, +Bsin Ow, 

dY 
(87) 
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where A = 

Here [(y) is the complex amplitude of the fluid-element liftup and 0 represents the 
mean velocity in the direction of the wave. Cross-flow instability may arise when 8 
has an inflection point. The highest growth rate may be expected for waves with 
wave fronts normal to the local flow direction. Hence, for the most unstable waves 

O,xQ,, A x 0  (90) 

or, for the total momentum transfer due to the instability, 

qn-$ (u, v*) Dt x Bcos Ow, 

- rn-$ (w, v*) Dt x Bsin Ow, 

where B = U$y. (93) 

Accordingly, we choose for the conditionally sampled driving term (Q) : 

( Q )  = - -  , (94) 

and for B a modified Gaussian 'hat ' ,  

6 being an arbitrary constant. The variation with y is the same as that used by Bark 
(1975). The factor 1-2(2/Q2 is included to  make 

m 1 Bdz=O,  
J -m 

which is necessary in order for the spanwise velocity perturbation to vanish a t  
x = & co. The resulting structure may be subdivided into a symmetrical one, denoted 
by subscript s, multiplying cos0, in (94), and an antisymmetrical one, denoted by 
subscript a, which multiplies sin 0,. Both of these may be determined from a single 
base solution, denoted by subscript b, with initial conditions determined from an 
initial stream function Yo for the initial cross-flow velocity field given by 

such that 

The symmetrical and antisymmetrical portions are then found from 

(97 ) 

avb av 
ax a2 

us = -COSO,, v, = >sin Ow, 
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and similarly for the other components. Since, following (98), 

J;m fls(x,, y, 2 , O )  dx, = 0, 

only the antisymmetrical portion will be responsible for the streamwise growth of the  
streaks for large times. 

10. Results for the model structures and comparisons with numerical 
simulations 

For the calculation of the evolution of the model streaky structures, the mean 
velocity and its first and second derivatives are needed. For this the expression 
proposed by Reichardt (1951) was employed. The initial streamwise velocity 
component for the disturbance was taken as zero on the assumption that the local 
instability on the average creates just enough Reynolds stress to remove the 
streamwise disturbance producing the instability (Landahl 1975). The scale factors 
l , ,  l,, and 1, were chosen such as to correspond approximately to the conditions in the 
investigation of Alfredsson et aE. (1988). I n  their conditional sampling of the 
numerically generated data for the streamwise fluctuation component they used the 
VISA ('variable interval space averaging ', the spatial counterpart of VITA) with an 
integration length of L+ = 200, which they found corresponds approximately to 
T+ = 10 in the VITA studies of Johansson & Alfredsson (1982). Accordingly, in the 
present theoretical model, the streamwise scale I, was selected such as to make the 
variance maximum, for a given value of the mean square of the streamwise 
disturbance velocity component, for that value of the integration time (see Landahl 
1984). This gave a value for I ,  of approximately 100 in viscous wall units, which was 
hence adopted. The vertical scale 1: in the model (98) was chosen as 15, which was 
found to give a y-distribution of the Reynolds stress in reasonable agreement with 
the measured Reynolds stresses during bursting found by Kim, Kline & Reynolds 
(1971). Finally, 1; = 30 was selected so as to give a spanwise scale of the u-signature 
close to what was obtained in the conditional sampling results of Alfredsson et al. 
(1988). 

The numerical quadrature of the appearing integrals was carried out with the aid 
of a cubic-spline-fit routine. Through numerical experimentation i t  was found that 
satisfactory accuracy was achieved by representing the integrands in 2 1 equidistant 
points between x+ = -200 and x+ = 200 and 21 points between y+ = 0 and y+ = 50. 
All the results presented were obtained from the near-wall approximation (56). In 
that, z appears solely as a parameter, so that only one (x,y)-plane for each of the 
symmetric and antisymmetrical distributions needs to be evaluated, the variation 
with x determined simply through multiplication with the appropriate functions of 
z. The step-by-step integration in time was carried out with a step size of At+ = 0.5. 
Some test calculations with half this step size produced insignificant differences, 
showing that the second-order explicit method developed for the time integration 
gave satisfactory convergence for this step size. 

In figures 2-5 are presented results for the evolution of both symmetrical 
structures, with 8 = O", and structures having a small amount of asymmetry, B = 5". 
Figure 2 illustrates their early development, a t  t+ = 5.  The u-contour plots for the 
plane x = 0 (figure 2a) shows a region of low speed situated downstream of one of 
high speed. (Note that for this plane the contours are independent of the obliquity 
of the initial disturbance since the antisymmetric part of the disturbance is zero in 
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FIGURE 2. Contours of constant u for model structure at t+ = 5: (a) plane z+ = 0, symmetrical and 
asymmetrical model st,ructure; (b) plane y+ = 15, symmetrical st,ructure (0 = 0'); (c) as (b) but. for 
asymmetrical structure, 0 = 5". Contours start at -0.2 with spacing of 0.05. 

this plane.) The low-speed region results from the liftup of fluid elements ('ejection ') 
and the high-speed region from inflow ('sweep') towards the wall caused by the 
slowly decaying symmetrical part of the initial w-distribution, see (94). This is also 
seen in the contour plot of the symmetrical disturbance (0 = 0") for the plane 
y+ = 15 (figure 2 b ) .  In the corresponding contour plot for the asymmetrical structure, 
with 8 = 5' (figure 2c) ,  this upstream-sweep downstream-ejection feature is not so 
clearly marked because i t  is masked by the strong effect of the antisymmetrical 
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portion, which makes the pattern dominated by a high-speed region side-by-side 
in the spanwise direction with a low-speed one, both somewhat tilted in the stream- 
wise direction. 

The long-time evolution for t+ = 25-60 is illustrated in figures 3-5 which give the 
u-contours a t  the plane y+ = 15 for the two kinds of disturbances. The elongation of 
the asymmetrical structure fort+ > 25 is clearly evident. Also, for large times (figures 
4 and 5) the asymmetrical structures have developed an irregular wavy appearance 
very reminiscent of the long structures found near the wall in the numerical 
simulations of Moin & Kim (1982). Since these structures are advected downstream 
with the mean velocity, in a laboratory frame of reference they will appear as 
oscillations. This result is also in accordance with the experiments of Kline et al. 
(1967) which showed that the streaks began to oscillate before they broke up. 

The symmetrical structures, on the other hand, show little', if any, streamwise 
growth; in contrast, for large times they appear to break up into smaller cells. This 
behaviour is most evident for the longest time considered, t+ = 60, (see figure 5a)  
and has the character of a splitting of the structure into cells of about half the 
original streamwise scale with the cells weakening with increasing distance 
downstream. This behaviour may be explained by the excitation of damped waves, 
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which is also strongly suggested by the results shown in figure 5 c ) ,  in which only the 
transient part of the solution is included, and which do not show this behaviour. 
Since the transient part of the solution omits the interactive portion taking account 
of the effect of t,he curvat'ure of t'he mean velocity distribution, it cannot incorporate 
any wave motion. 

The results obtained may be compared with those found from numerical simulation 
of turbulent wall-bounded flows. In  figure 6 is reproduced the instantaneous 
streamwise fluctuation velocity contours for the plane yt = 6.14 obtained by Moin & 
Kim (1982) in their Navier-Stokes simulation of turbulent channel flow. The width 
of the spanwise section shown is approximately 600 in viscous wall units. The 
spanwise alternation of high- and low-speed elongated regions is clearly evident. 
Particularly interesting is the wiggly appearance of the longer streaks, also exhibited 
by the theory for the older structures. This behaviour may be a consequence of the 
excitation of the damped waves and points to  a possible explanation for the streak 
oscillations seen in the visualization experiments discussed above. 

The NASA Ames numerical data bases were also used in the recent investigations 
by Johansson, Alfredsson &, Kim (1988) and Alfredsson et al. (1988) to study the 
near-wall turbulence structure with the use of the VISA conditional sampling 
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FIGURE 5 .  Contours of constant u in the plane y' = 15, t+ = 60: ( a )  symmetrical structure; ( b )  
symmetrical structure, transient par t  of the solution ; ( c )  asymmetrical structure, 0 = 5". Contours 
s tar t  at (a )  -2 .5 .  ( b )  -2.0. (c) -2.5 with spacing of 0.5. 

technique. The straightforward application of any one-point detection scheme, such 
as the VITA or VISA, will sort out only structures with spanwise symmetry because 
of the statistical homogeneity in z of the fluctuating field. However, simple 
theoretical arguments (Landahl 1975) indicate that asymmetrical structures may be 
important. In  order to study asymmetrical structures, Alfredsson et al. (1988) 
devised a special scheme, in which the individual structures were switched with 
respect to the (x, y)-midplane according to the sign of the spanwise derivative of u a t  
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=I- 
FIGURE 6. Contours of fluctuating streamwise velocities in the plane y+ = 6.14 obtained by 

numerical simulation for a channel flow. From Moin & Kim (1982). 

the detection point. The resulting u-pattern in the y+ = 15 plane (taken from 
Alfredsson & Johansson 1988) is shown in figure 7 (c )  a.t the time of detection of the 
structure. The corresponding symmetrical structure is illustrated in figure 7 (a ,  b) .  
The point x+ = 0 in their diagram is located a t  the point of detection, which is 
approximately a t  the point where au/ax is maximum. In the present theoretical 
model the maximum in au/ax occurs approximately, fort+ = 25, a t  the point marked 
with an x in figure 3 (a ,  b )  ; this point thus corresponds to x = 0 in the VISA-educed 
results of Alfredsson et al. (1988). The contours of u from the model for an 
asymmetric structure with 8 = 5" show a remarkable similarity with those obtained 
from the conditionally sampled numerical data. The model symmetrical structure 
(6' = 0") results are also in good qualitative agreement with the sampled numerical 
data. 

The model structures do differ in details from those exhibited by the statistical 
analysis of numerically generated flows, however. The model results show a much 
more abrupt onset of the disturbed region than do the numerically generated ones. 
This may possibly be a consequence of the extreme temporal intermittency for the 
nonlinear source term assumed in the idealized model, with a Dirac delta function in 
time. Also, the sample selected for the construction of the average structure includes 
disturbances of all different obliquities, which would give rise to  a smearing effect on 
the conditionally averaged structure. Such a smearing will not show up in the model 
structures, which are calculated for one particular oblique angle. 

1 1. Conclusions 
In  the model considered the fluctuating flow field is assumed to be governed 

primarily by the linear interaction with the mean shear, the nonlinearity acting only 
during a vanishingly short time to supply the initial conditions for the subsequent 
linear evolution. The justification for such a radical idealization is the observed high 
intermittency of the v-fluctuations, as reflected in the very high values of the flatness 
found for the distribution function of this component in the near-wall region, and 
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FIGURE 7. Cont,ours of const,ant, 11. for VISA-edured st,rurtures obtained by Alfredsson & Johansson 
(1988) from numerically simulated turbulent channel flow using the SASA Ames laboratory data  
bases : (a) detection (r, y)-plane, symmetrical structure ; (6) plane y' = 15, symmetrical structure : 
( c )  y' = 15, asymmetrical structure. 

which is also seen in the bursting phenomenon. It is significant that  only the v- 
component shows this intermittency , the u-component in contrast evolves over a 
protracted time producing continuously growing streaky regions of low- and high- 
speed flow. 

The formation of the streaky structure was shown to be a direct consequence of 
algebraic instability (Landahl 1980). Streaks will grow from any initial local and 
three-dimensional disturbances having a non-zero net vertical momentum along lines 
of constant y, x .  As suggested in an earlier paper (Landahl 1975), such a disturbance 
could be initiated by a local inflectional instability region with spanwise asymmetry, 
as would be thc case for an  oblique wave-like disturbancc, perhaps resulting from a 
cross-flow instability induced by the large-scale spanwise motion. 

The Reynolds stress contributed by the streaks may be expressed in a simple 
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manner in terms of the mean square of the fluid-element liftup, as in Prandtl’s 
mixing-length model. However, the present model gives a different multiplication 
factor, (1/2Tb) (aU/ay),  being the average time between bursts, to the factor 
( i3U/ i3~)~  proposed by Prandtl (1925). The model also suggests that the streaks 
account for the major part of the Reynolds stresses in the near-wall region, and hence 
also for the turbulence production. 

The structures obtained from the model show a remarkable similarity with those 
seen in visualization experiments and found from numerical simulations. Thus, the 
continuous linear growth predicted by the present linear inviscid model is reflected in 
the longevity, and the large eventual streamwise growth, of the streaks observed 
both in laboratory and numerical experiments. Also, the irregular wavy appearance 
of the streaky structures seen in the theoretical model, as well as in the numerical 
simulations, is strongly suggestive of oscillations that Mine et al. (1967) found to 
occur just before the streak breakup. 

The success of a quasi-laminar model like the present one in explaining some of the 
behaviour of the coherent structures in the turbulent boundary layer suggests the 
possibility that certain features of turbulent flow may be studied in a laminar 
environment. This possibility has been explored in the recent Ph.D. dissertation of 
Breuer ( 1988) who carried out parallel laboratory, analytical and numerical 
investigations of a transient three-dimensional localized disturbance in a laminar 
boundary layer. He found that the downstream evolution of the disturbance was 
qualitatively similar to the VITA-educed coherent structures in a turbulent 
boundary layer. He also discovered that the transition to turbulence in such a 
disturbance, if initially sufficiently strong, follows a different path to that described 
by the classical one of the growth of a Tollmien-Schlichting wave packet; the 
stronger disturbance could go through a nonlinear bypass mechanism through the 
formation of an internal shear layer which would then break down through small- 
scale inflectional instability. 
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